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Idealized glass transitions for a system of dumbbell molecules
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Physik Department, Technische Universita¨t München, 85747 Garching, Germany

~Received 24 October 2001; published 3 April 2002!

The mode-coupling theory for ideal glass transitions in simple systems is generalized to a theory for the
glassy dynamics of molecular liquids using the density fluctuations of the sites of the molecule’s constituent
atoms as the basic structure variables. The theory is applied to calculate the liquid-glass phase diagram and the
form factors for the arrested structure of a system of symmetric dumbbells of fused hard spheres. The static
structure factors, which enter the equations of motion as input, are calculated as function of the packing
fraction w and the molecule’s elongationz within the reference-interaction-site-model and Percus-Yevick
theories. The critical packing fractionwc for the glass transition is obtained as nonmonotone function ofz with
a maximum nearz50.43. A transition line is calculated separating a small-z-glass phase with ergodic dipole
motion from a large-z-glass phase where also the reorientational motion is arrested. The Debye-Waller factors
at the transition are found to be somewhat larger for sufficiently elongated systems than those for the simple
hard-sphere system, but the wave-number dependence of the glass-form factors is quite similar. The dipole
reorientations forz>0.6 are arrested as strongly as density fluctuations with wave vectors at the position of the
first sharp diffraction peak.

DOI: 10.1103/PhysRevE.65.041503 PACS number~s!: 64.70.Pf, 61.20.Lc, 61.25.Em
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I. INTRODUCTION

The mode-coupling theory~MCT! for idealized liquid-
glass transitions has been proposed originally as a mi
scopic approximation theory for the dynamics of simple l
uids @1#. The MCT equations formulate the idea th
correlation functions for density fluctuations have to
evaluated self-consistently with the correlation functions
force fluctuations. The derived equations require the st
structure factor as input, which is anticipated to be a smo
function of the wave vector and of control parameters, s
as the packing fractionw. The equations exhibit a bifurcatio
singularity for certain values of the control parameters, s
for w5wc . For w,wc , the solutions describe ergodic liqui
dynamics, while forw>wc nonergodic dynamics is obtaine
describing an amorphous solid. The arrested glass struc
for w>wc is characterized by glass-form factors, also
ferred to as nonergodicity parameters. They generalize
concept of the Edwards-Anderson parameter from the the
of spin glasses@2#; they can be determined in scattering e
periments and molecular-dynamics-simulation studies.
MCT equations can be solved by asymptotic expansion
ing, e.g., uw2wcu as a small parameter@3,4#. The leading
order results establish universal results for the glassy dyn
ics @5#. Anticipating that these universal formulas are va
also for mixtures and for molecular glass-forming system
extensive tests of the MCT with data from experiments a
simulations have been carried out during the past 10 y
@6,7#. Due to the invention of improved spectrometers a
progress in simulation techniques, the work of testing M
is still an active field. Let us mention as particularly impre
sive recent examples the studies with the optical Kerr ef
@8,9#, the depolarized-light-scattering work for toluene@10#,
the quantitative tests of the form factors for silica@11#, and
the scaling-law analysis of simulation data for a polym
model@12#. The indicated tests suggest that MCT deals pr
erly with some essential features of glass-forming system
1063-651X/2002/65~4!/041503~17!/$20.00 65 0415
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There is a problem in the tests of the universal MC
formulas: the range of validity of these leading-ord
asymptotic results is not universal. For example, the ti
interval for the density-fluctuation decay according to v
Schweidler’s power law depends nontrivially on the wa
vector of the fluctuations. Fitting data by a power law f
times outside the regime of validity of the asymptotic la
may be possible but can yield misleading conclusions@13#.
The range of validity of the leading-order result can be d
termined by calculating the leading corrections or by co
paring with the numerical solutions of the full equations
motion@3,4#. But, for such discussions one has to analyze
complete equations of motion, i.e., one needs an underst
ing of the microscopic details of the system. Thus, there
the necessity to extend the MCT so that models can be
lyzed which describe the experimental situation closely. T
is the motivation for the present paper where MCT shall
extended to molecular liquids and where this extension s
be exemplified for a hard-dumbbell system.

Extensions of MCT to molecular systems have been st
ied already, generalizing the concept of a density-fluctuat
correlator to the one of infinite matrices of correlation fun
tions formed with tensor-density fluctuations@14–22#. The
results calculated for the glass-form factors for a model
water@16,18# and for a liquid of linear molecules@17# could
be used to explain simulation data quantitatively. Promis
results for anomalous oscillation spectra for a dipolar-ha
sphere system have been calculated@20#. For the model of a
dilute solute of linear molecules in a solvent of spheric
particles, the MCT equations could be fully solved@21,22#.
The solutions were used to demonstrate the applicability
the universal formulas also for reorientational motion and
explain the characteristic difference between thea peaks for
dielectric-loss and depolarized-light-scattering spectra,
they have been observed in some experiments for van
Waals liquids. The cited work shows that MCT studies m
contribute to the understanding of glassy dynamics, whic
©2002 The American Physical Society03-1
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beyond the implications of universality.
The MCT equations based on the tensor-density desc

tion of molecular systems have a different mathemat
structure than the ones studied so far. It is unclear whe
the bifurcation dynamics of these equations exhibits
same universal laws as derived within the MCT for atom
systems. It is not obvious that codes can be developed fo
numerical solutions of these equations within the regime
glassy dynamics. Therefore, it was suggested to base
MCT for molecular systems on the site representation@23–
25#. This leads to equations withn3n matrices wheren is
the number of atoms producing the force centers in the m
ecules. For the simple case of a dilute solution of line
molecules, it was shown that this approach yields results@24#
in semiquantitative agreement with the much more involv
tensor-density theory@22#. In the present paper, this wor
shall be continued with the intention to demonstrate a co
plete set of results for the glassy dynamics of a system
linear molecules.

The paper is organized as follows. The basic general M
equations are obtained in the Appendix by modification a
generalization of the previous work@23,24#. They are spe-
cialized in Sec. II to a formulation of the equations of moti
for the coherent and incoherent density correlation functi
for the symmetric-hard-dumbbell system. The static struct
factors, which determine the mode-coupling coefficients,
evaluated within the reference-interaction-site-mo
~RISM! theory. To analyze their features in Sec. III, they a
decomposed in their various angular momentum contri
tions which are evaluated within the Percus-Yevick theo
Section IV explains the phase diagram for the system and
glass-form factors. The conclusions~Sec. V! summarize the
results while the discussion of the correlation functions is
for a following paper@26#.

II. A MODE-COUPLING THEORY FOR A SYSTEM
OF SYMMETRIC DUMBBELLS

A. The model

A system ofN rigid dumbbell molecules distributed wit
density r is considered. The molecule shall be describ
within the interaction-site formalism@27,28#, where the con-
stituent atoms shall be calledA andB. Let rW i

a , a5A, or B,
denote the position vectors of the atoms in thei th molecule,
so thatL5urW i

A2rW i
Bu denotes the distance between the t

interaction sites. VectoreW i5(rW i
A2rW i

B)/L abbreviates the axis
of the i th molecule. Denoting the mass of atoma asma , the
total mass M5mA1mB and the moment of inertiaI
5mAmBL2/M determine the thermal velocitiesvT

5AkBT/M and vR5AkBT/I for the molecule’s translation
and rotation, respectively. HereT denotes the temperature
Let us introduce also the center-of-mass positionrW i

C

5(mArW i
A1mBrW i

B)/M and the coordinatesza of the atoms
along the molecule’s axis: zA5L(mB /M ), zB5
2L(mA /M ). The basic structural variables are the tw
interaction-site-density fluctuations for wave vectorsqW
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N

exp~ iqW •rW i
a!, a5A or B. ~1!

The site-site static structure factorsSq
ab5^rqW

a* rqW
b
&/N provide

the simplest information on the equilibrium structure of t
system. Herê•••& denotes canonical averaging. Because
isotropy,Sq

ab depends only on the wave numberq5uqW u. The
site-site static structure factorSq

ab consists of the intramo-
lecular and intermolecular parts. The former is denoted
wq

ab ; for a rigid dumbbell molecule it is given bywq
ab5dab

1(12dab) j 0(qL). Here and in the followingj l (x) denotes
the spherical Bessel function of indexl . The static structure
factors Sq

ab shall be combined to a 232 matrix Sq , and
similar matrix notation will be used for other site-site corr
lation functions. The site-site Ornstein-Zernike equati
@27,28#, Sq5@wq

212rcq#21, relatesSq
ab to the site-site direct

correlation functioncq
ab .

The structural dynamics of the system shall be descri
by the interaction-site-density correlators

Fq
ab~ t !5^rqW

a
~ t !* rqW

b
~0!&/N. ~2!

These are real even functions of time obeyingFq
ab(t)

5Fq
ba(t). The short-time expansion can be written as

Fq~ t !5Sq2
1

2
q2Jqt21O~ t4!. ~3!

The continuity equation readsṙqW
a
5 iqW • jWqW

a , where the longitu-

dinal current fluctuation is given byjWqW
a
5( ivW i

aexp(iqW•rWi
a) with

vW i
a denoting the velocity of atoma in the i th molecule.

Therefore, one getsJq
ab5^(qW • jWqW

a)*( qW • jWqW
b)&/Nq2, whose ex-

plicit expressions for a rigid dumbbell molecule are given
@29#

Jq
ab5vT

2wq
ab1vR

2 S 2

3
zazbD @dab1~12dab!

3$ j 0~qL!1 j 2~qL!%#. ~4!

The dynamics of the tagged molecule shall also be con
ered. It is described by the self part of the interaction-s
density correlators

Fq,s
ab ~ t !5^rqW ,s

a
~ t !* rqW ,s

b
~0!&. ~5!

HererqW ,s
a

5exp(iqW•rWs
a) with rWs

a denoting the position vector o
atoma in the tagged molecule. The short-time expansion
the correlatorFq,s(t) is given by Eq.~3! with Sq replaced by
wq . The same functionJq

ab determines the short-time dy
namics ofFq,s

ab (t) since the velocities of different molecule
at the same time are statistically independent.

For later convenience, it shall be shown here how
correlation functions in the interaction-site representat
can be expressed in terms of the ones in the tensor-de
description. Following the convention in Refs.@21# and@22#,
3-2
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IDEALIZED GLASS TRANSITIONS FOR A SYSTEM OF . . . PHYSICAL REVIEW E 65 041503
coherent tensor-density fluctuationsr l
m(qW ) for the angular-

momentum indexl and the helicity indexm shall be defined
by decomposing thei th molecule’s position variable in plan
waves exp(iqW•rWi

C) for the center of massrW i
C and in spherical

harmonicsYl
m(eW i) for the orientation vectoreW i ,

r l
m~qW !5 i l A4p(

i 51

N

exp~ iqW •rW i
C!Yl

m~eW i !. ~6!

The structural dynamics is described by the matrix of co
elators

F l l 8
m

~q,t !5^r l
m~qW 0 ,t !* r l 8

m
~qW 0,0!&/N; qW 05~0,0,q!.

~7!

The general correlatorŝr l
m(qW ,t)* r l 8

m8(qW ,0)& can be written
as linear combination of the functionsF l l 8

m (q,t); they van-

ish for m5” m8 if qW 5qW 0 @21#. In particular, the equilibrium
structure is described by the static correlation functions

Sl l 8
m

~q!5^r l
m~qW 0!* r l 8

m
~qW 0!&/N. ~8!

Since the position vectors of the interaction sites can be w
ten asrW i

a5rW i
C1zaeW i , the Rayleigh expansion of the expone

tial in Eq. ~1! yields the formula

rqW 0

a
5(

l

A2l 11 j l ~qza!r l
0 ~qW 0!. ~9!

Substitution of this expression into Eq.~2! leads to an ex-
pression for the density correlators in the site representa
in terms of those in the tensor-density description

Fq
ab~ t !5 (

l ,l 8
A~2l 11!~2l 811! j l ~qza! j l 8~qzb!

3F l l 8
0

~q,t !. ~10!

In particular, the site-site static structure factorsSq
ab are re-

lated to the tensorial ones via

Sq
ab5 (

l ,l 8
A~2l 11!~2l 811! j l ~qza! j l 8~qzb!Sl l 8

0
~q!.

~11!

Similarly, one obtains formulas relating tagged-molec
correlators in the site representation and those in the ten
density description

Fq,s
ab ~ t !5 (

l ,l 8
A~2l 11!~2l 811! j l ~qza! j l 8~qzb!

3Fs,l l 8
0

~q,t !, ~12!

whereFs,l l 8
0 (q,t) denotes the self part ofF l l 8

0 (q,t). Since
Fs,l l 8

0 (q,0)5d l l 8 , one gets
04150
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l
~2l 11! j l ~qza! j l ~qzb!. ~13!

In the present paper, a system of symmetric dumbb
molecules, consisting of two fused hard spheres of diame
dA5dB5d and massesmA5mB5M /2, shall be considered
The elongation parameterz5L/d quantifies the bond length
All equilibrium properties of such a hard-dumbbell syste
with a fixed elongation are specified by the packing fract

w5rV0 , V05
p

6
d3S 11

3

2
z2

1

2
z3D . ~14!

HereV0 is the volume of a dumbbell molecule. Througho
the rest of this paper, the diameter of the constituent atom
chosen as the unit of lengthd51.

For a symmetric system, there are only two independ
density correlators, sinceFq

AA(t)5Fq
BB(t). It is convenient to

perform an orthogonal transformation to fluctuations of to
number densityrqW

N and ‘‘charge’’ densityrqW
Z ,

rqW
x
5~rqW

A
6rqW

B
!/A2, x5N or Z. ~15a!

The transformation matrixP5P21 reads

P5
1

A2
S 1 1

1 21D . ~15b!

It diagonalizes the matricesSq , wq , andJq as

~PSqP!xy5dxySq
x , Sq

x5Sq
AA6Sq

AB , ~15c!

~PwqP!xy5dxywq
x , wq

x516 j 0~qz!, ~15d!

~PJqP!xy5dxyXvT
2wq

x1
1

6
vR

2z2@17$ j 0~qz!1 j 2~qz!%# C,
~15e!

wherex,y5N or Z. Also the matrix of density correlators i
diagonalized. Introducing the density correlatorsfq

x(t) nor-
malized tofq

x(t50)51, one gets

fq
x~ t !5^rqW

x
~ t !* rqW

x
~0!&/NSq

x , @PFq~ t !P#xy5dxyfq
x~ t !Sq

x ,

~16!

and similar equations hold for the normalized tagge
molecule correlatorsfq,s

x (t),

fq,s
x ~ t !5^rqW ,s

x
~ t !* rqW ,s

x
~0!&/wq

x ,

@PFq,s~ t !P#xy5dxyfq,s
x ~ t !wq

x . ~17!

There is an additional property due to the symmetry of
molecule. Since the intermolecular parts ofSq

AA andSq
AB are

the same, one getsSq
Z5wq

Z . A similar reasoning for the
charge-density correlators leads to

fq
Z~ t !5fq,s

Z ~ t !. ~18!
3-3
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For a system of symmetric dumbbell molecules, there is o
one independent coherent density correlator, viz.fq

N(t).

B. MCT equations for the density correlators

The MCT equations of motion for the density correlato
consist of an exact Zwanzig-Mori equation and the appro
mate expression for the relaxation kernel in terms of
mode-coupling functional, whose derivation is described
the Appendix. For a system of symmetric dumbbells, th
equations can be simplified considerably@24#. Multiplying
Eqs. ~A3!–~A7! from left and right with P given by Eq.
~15b! and inserting15PP between every pair of matrices, a
equations are transformed to diagonal ones. Thus, there
two sets of equations, one forfq

N(t) and another forfq
Z(t).

As explained in connection with Eq.~18!, the charge-density
correlatorfq

Z(t) is identical to its self part,fq,s
Z (t), which

shall be treated separately below. Thus, the only correl
describing the coherent density fluctuations is the total d
sity correlatorfq

N(t), whose Zwanzig-Mori equation reads

] t
2fq

N~ t !1~Vq
N!2fq

N~ t !1~Vq
N!2E

0

t

dt8mq
N~ t2t8!] t8fq

N~ t8!

50. ~19a!

The characteristic frequencyVq
N , which specifies the initial

decay of the correlator byfq
N(t)512 1

2 (Vq
Nt)21O(t4), is

given by

~Vq
N!25q2H vT

2@11 j 0~qz!#

1
1

6
vR

2z2@12 j 0~qz!2 j 2~qz!#J Y Sq
N . ~19b!

The relaxation kernel readsmq
N(t)5F q

N@fN(t)#, where Eqs.
~A5!–~A7! lead to

F q
N@ f̃ #5

1

2E dkWVN~qW ;kW ,pW ! f̃ k f̃ p , ~20a!

VN~qW ;kW ,pW !5
r

16p3
Sq

NSk
NSp

N$qW •@kWck
N1pW cp

N#/q2%2, ~20b!

with pW 5qW 2kW and cq
N52cq

AA . One gets from Eq.~A11! for
the nonergodicity parametersf q

N5fq
N(t→`),

f q
N5F q

N@ f N#/$11F q
N@ f N#%. ~21!

Notice that Eqs.~19a!, ~20!, and ~21! are formally identical
to the corresponding equations for simple systems@3#: the
difference is in the definition of the correlators and the dir
correlation functions. In particular, one can show that
preceding Eqs.~19!–~21! reduce to the ones for simple sy
tems in both thez→0 andz→` limits.

The MCT model for the hard-dumbbell system~HDS!
will be defined by two further technical assumptions. Fir
the site-site structure factorsSq

ab and the direct correlation
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functions cq
ab are evaluated within the RISM integra

equation theory@27,28,30#. Second, the wave numbers a
discretized to 100 equally spaced valuesq
50.2,0.6,1.0, . . . ,39.8. The details of the transformation o
the mode-coupling functional to a polynomial in the di
cretized variables can be found in Ref.@3#.

The discussion of Eq.~21! can follow that considered
previously for simple systems@3#. For a givenz, one finds a
critical packing fractionwc5wc(z) so that f q

N50 for w
,wc and f q

N.0 for w>wc . Figure 1 exhibits the control-
parameter plane for our system; the full line represents
wc versusz curve. The regime I, i.e., the states with (z,w)
below the full line, are the liquid states. For states on a
above the line, the density-fluctuation dynamics is non
godic. It is the purpose of this paper to explain the origin
this liquid-glass-transition curve and to quantify the arres
glass structure.

Comments on some technical details of our calculatio
are in order. We solved a set of equations in the RISM the
to obtain Sq

ab using the nonequally spaced wave-numb
grids introduced in Ref.@31#. The resultingSq

ab has been
subsequently transformed to the one on the above-mentio
equispaced grids using a cubic spline interpolation@32#. Our
results for the HDS are based on theSq

ab so obtained. Occa-
sionally, we will refer to results for the hard-sphere syste
~HSS!, i.e., the HDS withz50. For consistency, calculation
for the HSS have also been done using a static struc
factor, which is based on the numerical method just m
tioned. However, the numerically obtained structure fac
for the HSS is, due to the interpolation procedure, sligh
different from that of the analytic Percus-Yevick theory@28#.
Since the transition is sensitively dependent on the struct
factor peak, this leads to slightly different results for the H
from the previous ones reported in Ref.@3#, where the ana-
lytic Percus-Yevick theory is used. Typically, the differenc

FIG. 1. Phase diagram of the symmetric-hard-dumbbell sys
where the packing fraction is denoted byw and the elongation
parameter byz. The solid curve marks the type-B liquid-glass tran-
sition line, wc5wc(z). The dashed curve denotes the type-A tran-
sition line between phases II and III,wA5wA(z). The type-A tran-
sition line terminates at the critical elongationzc50.345 marked by
an arrow. The horizontal arrow marks the transition point of t
hard-sphere system~HSS!.
3-4
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IDEALIZED GLASS TRANSITIONS FOR A SYSTEM OF . . . PHYSICAL REVIEW E 65 041503
are less than 1%. Therefore, the results for the HSS base
the two different static inputs can be regarded as essent
the same. The nonstandard wave-number grids from
@31# and the subsequent interpolation procedure have b
adopted because of the following reason. The present m
shall be extended to one where the constituent atoms c
opposite electrical charges. Thereby it will be possible
study the interplay of steric-hindrance effects and Coulom
interaction effects. The method developed in Ref.@31# is well
suited for treating such a system in which both the short-
long-ranged interactions are simultaneously present. To h
the results for the HDS as reference model, it seems adeq
to carry out the calculation of the static input function stric
within the same frame.

C. MCT equations for the tagged-molecule correlators

One gets the Zwanzig-Mori equation for the normaliz
tagged-molecule correlatorfq,s

x (t)(x5N or Z) for a
symmetric-hard-dumbbell system by transforming Eq.~A8!
as explained above for deriving Eq.~19a!,

] t
2fq,s

x ~ t !1~Vq,s
x !2fq,s

x ~ t !

1~Vq,s
x !2E

0

t

dt8mq,s
x ~ t2t8!] t8fq,s

x ~ t8!50, x5N or Z.

~22a!

The characteristic frequencyVq,s
x specifies the initial decay

of the correlator byfq,s
x (t)512 1

2 (Vq,s
x t)21O(t4), and it is

given by

~Vq,s
x !25q2H vT

21
1

6
vR

2z2@17 j 0~qz!

7 j 2~qz!#/@16 j 0~qz!#J . ~22b!

The relaxation kernel can be written asmq,s
x (t)

5F q
x@fs

x(t),fN(t)#, where Eqs.~A9! and ~A10! lead to

F q,s
x @ f̃ s

x , f̃ #5
r

16p3

wq
x

q2E dkW S qW •pW

q
D 2

~cp
N!2wk

xSp
Nf̃ k,s

x f̃ p ,

~23!

with pW 5qW 2kW . From the long time limits of Eqs.~A8! and
~A9!, one gets for the nonergodicity parametersf q,s

x

5fq,s
x (t→`),

f q,s
x 5F q,s

x @ f s
x , f N#/$11F q,s

x @ f s
x , f N#%. ~24!

The mathematical structure of the two sets of Eqs.~22!–~24!
for x5N andZ is the same as that studied previously for t
tagged-particle-density correlator in a simple liquid@4#. In
particular, the set of equations forx5N reduce to that for the
tagged-particle-density correlator in both thez→0 and z
→` limits. In the same limits, the correlatorfq,s

Z (t) be-
comes identically zero.
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Equations~22!–~24! for the tagged symmetric dumbbe
immersed in a liquid of symmetric dumbbells are also fo
mally identical to those treated in Refs.@24,25# for the
symmetric-dumbbell molecule dissolved in a simple liqu
This is because the coherent density fluctuations of the
roundings in the former case is characterized only by
correlatorfq

N(t), i.e., a scalar correlator, and this feature
shared with the latter case. In analogy to the findings in
previous studies, one finds a line of transition pointswA
5wA(z), providedz<zc50.345. This line, which is shown
dashed in Fig. 1, separates glass states in regime II and
gime III. In regime II, the reorientational motion is ergodi
i.e., the states deal with the amorphous analog of a pla
crystal. In regime III also the reorientational motion is no
ergodic sincef q,s

Z .0. Crossing the dashed line by, e.g., i

creasingw, f q,s
Z change continuously~type-A transition!.

Crossing the heavy line,f q
N changes discontinuously~type-B

transition!. The interest of the present studies concerns
transition from the liquid to a glass with all density correl
tors arrested, as obtained forz.zc by increasingw. As a
representative situation with strong steric hindrance for
orientational motion, molecules withz51.0 shall be ana-
lyzed in detail. Forz approachingzc from above, the steric
hindrance for reorientations weakens, and molecules witz
50.4 shall be used to demonstrate this case.

III. STRUCTURE OF THE RELAXED SYSTEM

The static structure factor for the total density fluctuatio
Sq

N is the basic input of our theory. It quantifies the simple
information on the averaged particle distribution, anticip
ing the system to be relaxed in a canonical equilibrium sta
The latter is assumed to be an amorphous one. It may
metastable, e.g., with respect to crystallization. The variat
of Sq

N with changes of the packing fractionw and the mol-
ecule’s elongationz provides the key for explaining the
phase diagram in Fig. 1. Extending earlier work@33# to the
high-density regime,Sq

N shall be analyzed in this section.

A. Static structure factors and angular correlations

Figure 2 exhibits results forSq
N calculated from the RISM

theory @27,28,30# for the two representative elongationsz
50.4 and 1.0 at and near the critical packing fractionwc(z).
For small q, the structure factor is small. Because of t
dense packing, the compressibilitykq}Sq

N for long-
wavelength fluctuations is strongly suppressed. These fl
tuations are irrelevant for the glassy arrest in our system.
phase diagram does not change more than 1% if fluctuat
with, say,q<3 are cut off. Fluctuations with, say,q>10 are
relevant, sinceSq

N21 is of order unity. But in this regime
the structure factor is not very sensitive with respect
changes of density. Therefore, the liquid-glass transition
driven mainly by the changes ofSq

N for q'7, i.e., by the
fluctuations with wave vectors near the position of the fi
sharp diffraction peak. This feature is analogous to t
found in the hard-sphere system@1#. However, the results
shown in Fig. 2 are for molecular systems in which angu
3-5
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correlations should play an important role as well. This s
tion is devoted to discuss how angular correlations mani
themselves inSq

N .
To proceed, let us decompose theSq

N in terms of the
spherical-harmonic expansion coefficientsSl l 8

m (q) defined
in Eq. ~8!: the coefficientS00

0 (q) describes the static cente
of-mass density fluctuations, and the higher coefficie
probe the angular correlations. This decomposition can
derived from Eq.~11! by noticing the definitionSq

N5Sq
AA

1Sq
AB ,

Sq
N5 (

l ,l 8:even

2A~2l 11!~2l 811! j l ~qz/2!

3 j l 8~qz/2!Sl l 8
0

~q!. ~25!

Here the angular momentum indicesl and l 8 take only
even numbers due to the top-down symmetry of the dum
bell molecule. It is clear that the coefficientsSl l 8

0 (q) contain
more information thanSq

N since the latter can be expressed
terms of the former, but not vice versa.

The expansion coefficientsSl l 8
m (q) have been calculate

within the Percus-Yevick~PY! theory @34,35# up to the
angular-momentum-index cutoffl cut56. For the symmetric
dumbbell, this results in 30 independent coefficients to
dealt with in solving the PY equation. The representat

FIG. 2. Static structure factorSq
N for the total density fluctua-

tions as function of wave numberq for the elongationsz50.4 ~up-
per panel! and 1.0~lower panel!. The results refer to packing frac
tions w5wc(11e) with e50 ~solid lines!, e521025/3 ~dashed
lines!, ande511025/3 ~dotted lines!. Herewc denotes the critical
packing fraction; it is given bywc50.675 and 0.565 forz50.4 and
1.0, respectively. The first sharp diffraction peak inSq

N for z50.4
occurs atq57.0 in the discretized wave-number grids, and
heights are 4.54, 5.47, and 6.61 with increasingw. The correspond-
ing peak forz51.0 occurs atq57.4, and its heights are 3.33, 3.7
and 4.24 with increasingw. Here and in the following figures the
diameter of the spheres is used as unit of length,d51.
04150
-
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results at the critical packing fraction for the diagonal co
ficientsSl l

0 (q) are shown in Fig. 3. For the small elongatio
z50.4, the density fluctuations forq'7 are dominated by
those of the center-of-mass degrees of freedom,l 50, while
contributions from the reorientational correlations are rat
small. On the other hand, for the large elongationz51.0, the
static structure forq'7 is primarily caused by the reorien
tational functionS22

0 (q), while the center-of-mass compone
S00

0 (q) only shows a weak structure. A strong peak atq'0 is
also seen in the coefficientS22

0 (q) for z51.0, which is a
precursor of a nematic instability. The increased importa
of the higher coefficients for larger elongations is demo
strated even more clearly by comparingS44

0 (q) for the two
elongations. These features of the coefficientsSl l

0 (q) for
small and large elongations are in accord with those foun
Ref. @36#, albeit for fluids of hard ellipsoids in which the
aspect ratio plays a role similar to (11z).

Figure 4 exhibits the decomposition ofSq
N at the critical

packing fraction based on Eq.~25!. The solid lines denoteSq
N

calculated from the RISM theory, and the dashed and do
lines denote the terms in the decomposition using the c
ficients Sl l

0 (q) from the PY theory. Cross terms (l 5” l 8)
are omitted to avoid overcrowding of the figures. The fun
tion Sq

N from the RISM theory and that based on Eq.~25!

with the coefficientsSl l 8
0 (q) from the PY theory are found

to be in good agreement with each other, and therefor
makes sense to discuss the decomposition ofSq

N using the
results from two different integral-equation theories. As me
tioned in connection with Fig. 2, the glass transition of o

FIG. 3. Spherical-harmonic expansion coefficientsSl l
0 (q) of

the structure factor for the elongationsz50.4 ~upper panel! and 1.0
~lower panel! at the critical packing fractionw5wc for the angular
momentum indicesl 50, 2, and 4.
3-6
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system is driven by the first peak inSq
N centered atq'7.

Figure 4 shows that, for the small elongation, the first pea
primarily determined by the center-of-mass density fluct
tions, whilst the contributions from higher-order angular c
relations are responsible only for the peaks located in
higher-q region. On the other hand, when the elongation
large, the contribution from the center-of-mass degrees
freedom gets suppressed, but the higher-order angular c
lations become much more important for determining
first peak: the first peak is primarily accounted for by t
(2,2) contribution. Thus, the static density fluctuations de
mining the cage for the glass transition are of different o
gins for small and large elongations, respectively.

A comment shall be added concerning the strong pea
S22

0 (q) at q'0 shown in Fig. 3 forz51.0. It is clear from
Eq. ~25! that the functionS22

0 (q) contributes toSq
N with a

prefactorj 2(qz/2)2, which is proportional toq4 for small q.
As a result, this strong peak inS22

0 (q) hardly contributes to
Sq

N in the small wave-number regime; it only gives rise to
small peak centered atq'3.5 as shown in Fig. 4. Also, it is
seen that the (0,0) component has a peak at the samq
range. However, it is found that the small peak atq'3.5 is
canceled out by the (0,2) component, which is not shown
the figure. All this together results in the small and flatSq

N for
q,5. We conclude that the strong peak inS22

0 (q) at q'0 is
irrelevant for the glass formation for the elongationz51.0
within our theory.

The intramolecular correlation functionswq
x (x5N,Z)

from Eq. ~15d! enter the mode-coupling vertices implicitl
via the site-site Ornstein-Zernike equation forSq and explic-
itly via Eq. ~23!. Using Eq.~13!, they can be decomposed
analogy to Eq.~25!,

FIG. 4. The solid lines denote the static structure factorSq
N for

the total density fluctuations for the elongationz50.4 ~upper panel!
andz51.0 ~lower panel! at the critical packing fractionw5wc(z).
The dashed and dotted lines are the results of decomposition b
on Eq.~25!, where the numbers in parentheses (l ,l ) indicate the
component in the decomposition~see text!.
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wq
N(Z)5 (

l :even (odd)
2~2l 11! j l ~qz/2!2. ~26!

wq
N(Z) starts forq50 at the value 2~0! and then it oscillates

for q.5 around the value 1. The first oscillation minima
wq

N occur atq511.4 and 27.4 forz50.4, and atq54.5 and
11.0 for z51.0. Forwq

Z , the first minima are located atq
519.4 and 35.0 forz50.4, and atq57.8 and 14.2 forz
51.0.

Let us consider the change of the structure factor a
function of the elongationz for fixed packing fractionw.
Figure 5 exhibits the result forw50.56. It is seen that for
small elongations~the upper panel! the first peak height de
creases with increasing the elongation, whilst the oppo
trend is seen for large elongations~the lower panel!. This
feature can be explained in terms of the spherical-harmo
expansion coefficientsSl l

0 (q) as follows. As discussed in
connection with Fig. 4, the center-of-mass density fluct
tions (l 50) are primarily responsible for determining th
first peak inSq

N for small elongations, whereas the angu
correlations of the indexl 52 are more relevant for large
elongations. The strength of the center-of-mass correla
becomes weaker as the elongation is increased, and this
plains the decrease of the first peak height inSq

N for small

sed

FIG. 5. Static structure factorsSq
N for the total density fluctua-

tions at the fixed packing fractionw50.56 for various elongations
as indicated in the figure.
3-7
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S.-H. CHONG AND W. GÖTZE PHYSICAL REVIEW E65 041503
elongations. On the other hand, when the elongation is la
the l 52 component is relevant, and this angular correlat
becomes stronger with increasing elongation. This expla
the increase of the first peak height inSq

N with increasingz
for large elongations. Thus, the nonmonotonicz dependence
of the first peak height inSq

N for the fixed packing fraction
shown in Fig. 5 is due to the different origin of that peak f
small and large elongations.

B. Preferred orientations for nearest neighbors

A digression might be adequate for a better understand
of the equilibrium structure of our molecular systems, es
cially, of angular correlations for nearest neighbors. Su
angular correlations can best be investigated through the
lecular pair correlation functiong(r 12,u1 ,u2 ,f12). Herer 12
denotes the center-to-center separation, and the three a
u1 , u2, andf12[f12f2 specify the relative orientations o
the two linear molecules in the so-calledr frame. The pair
correlation function can be expanded as@35#

g~r 12,u1 ,u2 ,f12!54p (
l 1 ,l 2 ,m

gl 1l 2

m ~r 12!Yl 1

m ~u1 ,f1!

3Yl 2

m ~u2 ,f2!* . ~27!

The gl 1l 2
m (r 12) are the spherical-harmonic expansion coe

cients, and can be calculated within the PY theory@34,35#. In
the present work, the coefficients are calculated up to cu
l cut56.

The center-to-center radial-distribution functionsg00
0 (r 12)

for representative elongations at the large packing frac
w50.56 are shown in Fig. 6, along with the radial distrib
tion function for hard spheres (z50.0) at the same packin
fraction. As the elongation increases, the first peak posi
in g00

0 (r 12) increases, the height of the peak decreases,

FIG. 6. Center-of-mass component of the molecular pair co
lation function,g00

0 (r 12), as function of the center-to-center distan
r 12 at the fixed packing fractionw50.56 for various elongationsz.
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the peak becomes broader and somewhat irregular, wi
shoulder developing at separations just beyondr 1251. For
the elongationz51.0, the shoulder turns into a broad pr
peak centered atr 12'1.1.

It becomes more difficult to interpret thegl 1l 2

m (r 12) for

nonzero values ofl 1 andl 2. Therefore it seems adequate
follow Streett and Tildesley@33# and consider cuts throug
the space of the four variables determining the functiong in
Eq. ~27!. Typical cuts for discussing the relative orientatio
of two linear molecules are@33# ~i! the ‘‘T-shaped’’ orienta-
tion (u150, u25p/2, f125any value),~ii ! the ‘‘crossed’’
orientation (u15u25f125p/2), ~iii ! the ‘‘parallel’’ orienta-
tion (u15u25p/2, f1250), and~iv! the ‘‘end-to-end’’ ori-
entation (u15u250, f125any value). These orientation
lead to efficient packing at close approach in the sense
they all lead to the close contact of the constituent ato
and thus contribute to the first peak inSq

N . Most of the ori-
entations at high densities can be broadly classified as b
similar to one of these four. Because of the computatio
reason to be described in the next paragraph, the crossed
parallel orientations shall be combined to define the CP-t
orientation (u15u25p/2) by averaging over the anglef12,

g~r 12,u1 ,u2![
1

2pE0

2p

df12g~r 12,u1 ,u2 ,f12!. ~28!

Notice that the correspondingf12-averaged pair correlation
functions for the T-shaped (u150, u25p/2) and end-to-end
(u15u250) orientations remain the same as the origin
ones since the anglef12 is irrelevant in defining these two
orientations. Figure 7 exhibits representative results.

Before embarking on the conclusions to be drawn fro
Figs. 6 and 7, let us make comments on the cutoff problem
the summation in Eq.~27!. To check the convergence, w

-

FIG. 7. Thef12-averaged molecular pair correlation functio
g(r 12,u1 ,u2) as defined in Eq.~28! for the ‘‘T-shaped’’ (u150,
u25p/2) and the ‘‘CP-type’’ (u15u25p/2) orientations~see text!
at the packing fractionw50.56 for the elongationsz50.4 ~upper
panel! and 1.0~lower panel!.
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IDEALIZED GLASS TRANSITIONS FOR A SYSTEM OF . . . PHYSICAL REVIEW E 65 041503
also performed the same calculations withl cut54. It is
found that for distancesr 12.11z, the series converges rap
idly, i.e., the difference between the results withl cut54 and
those withl cut56 is small. However, for distancesr 12,1
1z, the difference is rather large reflecting the slow conv
gence of the series, and this effect becomes more pronou
with increasing density and elongation. An indication of t
lack of convergence is that the functions forz51.0 shown in
the lower panel of Fig. 7 can take unphysical negative val
in the ranger 12,11z. The reason for the slow convergen
in that range is that the functiong(r 12,u1 ,u2 ,f12) has step-
like features because of the hard-core repulsion, which c
not be accurately represented by a truncated series w
small value forl cut. This problem is likely to be a feature o
the spherical-harmonic expansion for any model in which
molecule has a relatively hard asymmetric core. It is a
found that a better convergence is achieved for
f12-averaged correlation function defined in Eq.~28! than
the originalg(r 12,u1 ,u2 ,f12), and this is why we have cho
sen the averaged ones to display the results. Despite t
unwelcome features, it is anticipated that qualitative featu
of the angular correlations are captured even withl cut56.
Notice that the mentioned cutoff problem does not influen
the results to be presented for the MCT since those are b
solely onSq

N calculated from the RISM theory.
The increase of the most probable nearest neigh

center-to-center separation with increasing elongation, wh
is demonstrated in Fig. 6, suggests that the majority of n
est neighbor pairs adopt orientations for which the center
center distance of closest approach increases with increa
elongation. Therefore, it seems likely that ‘‘CP-type’’ orie
tations do not contribute heavily to this peak ing00

0 (r 12),
because their closest approach remains in the regionr 12'1
irrespective of the elongation. It is also clear that ‘‘end-
end’’ orientations are unimportant, because their minim
approach distance (r 12511z) lies well beyond the distanc
at which the first maximum occurs ing00

0 (r 12). Hence, the
major contributions to the first peak ing00

0 (r 12) are likely to
come from orientations of the T-shaped type and ones c
to it. The first maximum in theg(r 12,u1 ,u2) for the
T-shaped orientation forz50.2, 0.4, 0.6, 0.8, and 1.0 occu
at r 1251.13, 1.24, 1.33, 1.41, and 1.46, respectively,
shown in Fig. 7 forz50.4 and 1.0. These positions are ve
close to the first maximum positions ing00

0 (r 12) for each
elongation shown in Fig. 6. This evidence is consistent w
a strong predominance of T-shaped nearest neighbor orie
tions. We therefore conclude that at the most probable n
est neighbor distance, there is a strong preference
T-shaped orientations over all others.

We next consider how the CP-type correlations manif
themselves in theg00

0 (r 12). As can be inferred from Fig. 7
such correlations would lead to a peak centered atr 12'1
irrespective of the elongation. This contribution leads to
small shoulder as shown in Fig. 6 forz50.6. For the larger
elongationz50.8, the shoulder gets more pronounced, a
subsequently it leads to a broad peak atr 12'1.1 for z51.0.

Unlike hard spheres for which two centers cannot
proach closer thanr 1251, two hard dumbbells can reac
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center-to-center distancer 12,1 by adopting a ‘‘crossed’’ ori-
entation. This explains why theg00

0 (r 12) in Fig. 6 are positive
even forr 12,1. The probability of the ‘‘crossed’’ orientation
increases with increasing density because it relieves
strain of the closely packed system. This effect is more p
nounced at high elongations as shown in Fig. 7, and i
major factor contributing to the growth of the shoulder
g00

0 (r 12) for the regionr 12,1 with increasing the elongation
Let us add one final comment. It is found from the exte

sions of the lower panel of Fig. 7 to the largerr 12 region that
both the T-shaped and CP-type correlations are rather
ranged. This is a manifestation of the strong peak inS22

0 (q)
at q'0 shown in Fig. 3 forz51.0, as was discussed also
Refs. @19# and @20#. The oscillatory feature of the above
mentioned angular correlations are found to continue up
r 12'2p/Dq, whereDq denotes the half-width of that pea
in S22

0 (q). This intermediate-range order is absent in the c
of small elongations, sayz50.4.

C. Bonding effects

The dumbbell liquid forz51.0 can be viewed as a syste
of hard spheres of diameterd51 whose density is 2r and
where some additional covalent interaction has forced p
to be formed. Let us consider the difference between
hard-sphere system and the bonded system in detail. Figu
compares the the radial-distribution functions and the st
structure factors for the two systems at the fixed pack
fraction w50.56. Notice that the site-site radial-distributio

FIG. 8. Upper panel: the site-site radial-distribution functi
gab(r ) for the symmetric-hard-dumbbell system~see text! with z
51.0 at the packing fractionw50.56 ~solid line!, and the radial-
distribution functiong(r ) for the hard-sphere system (z50.0) at
the same packing fraction~dotted line!. Lower panel: the corre-
sponding static structure factorSq

N for the total density fluctuations
for the symmetric-hard-dumbbell system, and the static struc
factor Sq for the hard-sphere system.
3-9
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S.-H. CHONG AND W. GÖTZE PHYSICAL REVIEW E65 041503
functiongab(r ) for the symmetric-dumbbell system becom
independent of the site indicesa and b, and this is the ad-
equate quantity to be compared with the radial-distribut
functiong(r ) for the hard-sphere system. On the other ha
the total-density static structure factorSq

N for the dumbbell
system is the relevant one to be compared with the st
structure factorSq for the hard-sphere system. This is b
cause, when the packing fraction is fixed, the number den
for the hard dumbbells withz51.0 is half of that for the hard
spheres, and the functionSq

N properly accounts for this dif-
ference. The functionsSq

N andSq are also the relevant input
for the MCT equations for the hard-dumbbell and ha
sphere systems, respectively.

It is seen from the upper panel of Fig. 8 that the agr
ment of the radial-distribution functions for the two system
is very good except for the first-coordination-shell region.
demonstrate that this difference is primarily caused by
bonding, we shall consider the coordination numberK, i.e.,
the number of nearest neighboring spheres surroundin
central sphere, which can be calculated from the rad
distribution function. It is found for the hard-sphere syste
that K512.1 atw50.56, which is a typical value for simpl
systems at high density. So,K would tend to a value 12 als
for the molecular system if the second sphere in one m
ecule was not attached to the first sphere. However, we fo
K511.4 forz51.0 atw50.56. Thus, as should be expecte
the second sphere in one molecule excludes one sphe
another from being a nearest neighbor to the first sphere,
this results in the reduction of the radial-distribution functi
in the first-shell region as shown in the upper panel.

The observed feature for the radial-distribution functio
also explains the reduction of the first peak height in
static structure factor forz51.0 compared to that forz
50.0, as exhibited in the lower panel of Fig. 8. Let us co
sider what would happen to the static structure factor for
hard-sphere system when a short-ranged attractive forc
added. This problem has been discussed for a square
system @37#. As demonstrated there, the attraction cau
bonding, in the sense that the most probable separatio
two particles is smaller than expected for a pure hard-sph
system. This leads to the shift of the first peak position in
static structure factor to higherq, the decrease of the pea
height, and the increase of the peak wings@37#. Although the
first feature is not so prominent, the static structure factor
the z51.0 dumbbell molecules reflects these features w
compared to that for the hard-sphere system.

We conclude that the structure of the cage for the ha
dumbbell system withz51.0 is very close to the one for th
hard-sphere system, and that the difference can be expla
as being due to the bonding effect.

IV. STRUCTURAL ARREST

A. Critical nonergodicity parameters

The upper panel of Fig. 9 exhibits the results for the no
ergodicity parametersf q

Nc at the critical pointw5wc for the
elongationsz50.4 and 1.0 calculated from Eq.~21!. These
are Debye-Waller factors of the system. They can be m
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sured, in principle, as cross section for coherent neutron s
tering. For largeSq

N , the compressibilitykq}Sq
N is large.

Therefore, spontaneous arrest is easier for largerSq
N , andf q

Nc

exhibits a maximum near the first peak position ofSq
N . With

varying q, f q
Nc oscillates in phase withSq

N ~cf. Fig. 2!. If the
packing fraction increases, the arrested glass structure
ens, i.e., thef q

N increases. Expanding this increase for sm
distance parameterse5(w2wc), one finds@3,4#

f q
N5 f q

Nc1DA~w2wc!hq
N1O~w2wc!. ~29!

The critical amplitudehq
N is positive. It characterizes the su

ceptibility of the arrested structure with respect to change
the control parameters. The formulas for the evaluation ofhq

N

and of the constantD.0 will be considered in the subse
quent paper@26#. Since f q

N<1, f q
N2 f q

Nc is bounded by 1
2 f q

Nc . Therefore, the critical amplitudehq
N for the increase

of f q
N is much smaller forq'7 than forq off the structure-

factor-peak position, as shown in the lower panel of Fig.
These features are analogous to those found in the h
sphere system@1,3#.

Figure 10 exhibits the tagged-molecule’s critical non
godicity parametersf q,s

xc (x5N, Z) for the elongationsz
51.0 and 0.4 calculated from Eq.~24!. These are Lamb-
Mössbauer factors describing the arrested probability dis
bution of the tagged molecule. As expected for a localiz
distribution Fourier transform, thef q,s

xc versus q curves
decrease with increasingq. The critical Lamb-Mo¨ssbauer
factor f q,s

Nc for the total number density fluctuations a
proaches unity forq tending to zero due to the particle
number conservation law. On the other hand, there is
analogous conservation law forx5Z, and therefore one get
f q→0,s

Zc ,1.

FIG. 9. Critical nonergodicity parameterf q
Nc and critical ampli-

tudehq
N for the coherent total density fluctuations for the elongat

z51.0 ~full lines!, z50.4 ~dashed lines!, and for the hard-sphere
system (z50.0, dotted lines!.
3-10
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A remarkable feature of Fig. 10 is the gentle oscillatio
exhibited by f q,s

Nc and f q,s
Zc . In analogy to the discussion fo

f q
Nc , it is expected thatf q,s

xc oscillates in phase withwq
x . As

discussed in connection with Eq.~26!, the functionwq
x ex-

hibits minima because of variousj l (qz/2)2 contributions,
and these minimum positions are marked as arrows in
10. One finds that the positions of the oscillations are w
reproduced by the arrows, indicating that they are due to
presence of various angular-momentum-indexl contribu-
tions to intramolecular interference effects. A more definit
analysis concerning the origin of the oscillations should
based on the decomposition off q,s

xc in terms of the nonergod
icity parameters of the tensorial density correlato
Fs,l l 8

0 (q,t) introduced in connection with Eq.~12! @24#.
Under the diagonal approximation Fs,l l 8

0 (q,t)
'd l l 8Fs,l l

0 (q,t), one gets from the long-time limit of Eq
~12!,

f q,s
xc 5~2/wq

x!(
l

~2l 11! j l ~qz/2!2f s
c~q,l ,0!. ~30!

Here, f s
c(q,l ,0)5 limt→` Fs,l l 8

0 (q,t) for w5wc , and l

should be even~odd! for x5N(Z). As discussed in Ref.@24#,
the gentle oscillations exhibited byf q,s

xc can be explained a
being due to the interference effects off s

c(q,l ,0) with the
intramolecular form factorsj l (qz/2)2. Unfortunately, we do
not have information on thef s

c(q,l ,0).
It might be interesting to consider how the results for t

total-density and charge-density fluctuations can be tra
lated to those for the atomic density fluctuations. The la
can be obtained from the former via the inverse relation
Eqs.~16! and ~17!,

FIG. 10. Critical Lamb-Mo¨ssbauer factors for the tagged mo
ecule’s total density fluctuationsf q,s

Nc ~upper panel! and for the
charge-density fluctuationsf q,s

Zc ~lower panel! for the elongationz
51.0 ~full lines! andz50.4 ~dashed lines!. The arrows indicate the
wave numbers for the minimum positions inwq

N and wq
Z , respec-

tively, calculated from Eq.~26!.
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Fq
AA5

1

2
~ f q

NSq
N1 f q,s

Z wq
Z!, ~31a!

Fq,s
AA5

1

2
~ f q,s

N wq
N1 f q,s

Z wq
Z!. ~31b!

Notice that the self-partFq,s
AA can be measured as cross se

tion for incoherent neutron scattering. The results at the c
cal packing fraction are exhibited as solid lines in Fig. 11
the elongationz51.0. The dashed and dashed-dotted lin
are contributions from the total-densityN and charge density
fluctuationsZ, respectively. A small peak centered atq'4
develops inFq

AAc due to the charge-density fluctuations. T
dotted line in the lower panel for the self-partFq,s

AAc denotes
the result based on the Gaussian approximation

Fq,s
AAc'e2q2(r A

c )2
. ~32!

Here,r A
c is the critical localization length for atomA, defined

via limq→0(12Fq
AAc)/q25(r A

c )2. It is seen that the constitu
ent atom’s critical Lamb-Mo¨ssbauer factorFq,s

AAc is well de-
scribed by a Gaussian, in particular, it does not exhibit os
lations. It is surprising that the sum of two non-Gauss
functions is almost Gaussian. The analogous results foz
50.4 are quite similar, except the peak ofFq

AAc for q'4 is
suppressed.

B. Phase diagram

The phase diagram in Fig. 1 can be understood as a re
of the control-parameter dependence of the structure fac
which were explained in Sec. III. A prominent feature is t

FIG. 11. The full lines exhibit the critical nonergodicity param
eters for the atomic density fluctuationsFq

AAc ~upper panel! and its
self partFq,s

AAc ~lower panel! for the elongationz51.0. The dashed
and dashed-dotted lines denote contributions from the total-den
N and charge-densityZ components, respectively. The dotted line
the lower panel denotes the result based on the Gaussian app
mation forFq,s

AAc , Eq. ~32!.
3-11
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maximum of thewc versusz curve nearz50.43. This is
because of the two different mechanisms for the struct
arrest, one dominating for small and the other one for la
elongations. As discussed in connection with Fig. 2, the g
transition is driven by the first-peak region in the static str
ture factorSq

N , irrespective of the elongation. For small elo
gations, the peak is primarily determined by the center-
mass density fluctuations, and its strength becomes we
with increasing elongation as explained in connection w
Fig. 4 and the upper panel of Fig. 5. Therefore, a relativ
higher packing fraction is required to get into the glas
phase if the elongation is increased, and this explains
increase of thewc(z) curve for small elongations. On th
other hand, for large elongations, the first peak inSq

N is
mainly determined by thel 52 angular correlation, and it
magnitude gets larger with increasing the elongation as
explained in connection with Fig. 4 and the lower panel
Fig. 5. Thus, a relatively lower packing fraction is requir
for the glass formation as the elongation is increased,
this explains the decrease of thewc(z) curve for large elon-
gations. As a result of these two competing mechanisms
the glass formation, the transition linewc(z) exhibits a maxi-
mum.

Another remarkable feature results from the structu
factor-peak reduction due to bonding, which was explain
above in connection with Fig. 8. This reduction stabilizes
liquid phase. As a result, the critical packing fraction f
elongationz51, wc(z51)'0.56 is larger than that for the
transition of the hard-sphere system,wc(z50)'0.53. Com-
bined with the results discussed in the preceding paragr
this implies that for all 0,z<1 the critical packing fraction
of the hard-dumbbell system is larger than that of the ha
sphere system; the liquid phase gets expanded due to
formation of molecules. The increased-free-volume pheno
enon due to the bond formation is consistent with the re
discussed for a square-well system@37#.

There are two alternatives for the glassy states, phas
and III in Fig. 1, with respect to the charge-density dynam
of the tagged molecule. Phase II deals with states for su
ciently smallz. There is such small steric hindrance for a fl
of the tagged molecule’s axis between the two energetic
equivalent positionseW s and2eW s that Eq.~24! for x5Z yields
f q,s

Z 50. The dynamics of the charge fluctuations is ergod
In particular, the dipole correlator relaxes to zero:C1,s(t
→`)50 whereC1,s(t)5^eW s(t)•eW s(0)&5fq50,s

Z (t) @24#. For
sufficiently largez, on the other hand, the steric hindran
for dipole reorientations becomes so effective, that also
charge fluctuations behave nonergodically. In this case,
~24! for x5Z yields a positive long time limit, 0, f q,s

Z

5fq,s
Z (t→`). In particular, dipole disturbances do not rel

to zero: C1,s(t→`)5 f 1,s5 f q50,s
Z .0. This phase III is a

glass with all structural disturbances exhibiting nonergo
motion. In particular, the nonergodicity parameterf 1,s

c for,
say,z>0.6 is as large as the maximum off q

Nc , Fig. 9. The
two phases II and III are separated by a curvewA(z), where
wA(z)>wc(z). This curve is shown as the dashed line in F
1. Since the steric hindrance for the molecule’s flip moti
increases with increasingz, one might expect that the curv
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wA(z) would monotonically decrease with increasingz.
However, this is not the case. What monotonically decrea
with increasingz is the differencewA(z)2wc(z), and the
variation ofwc(z) dominates that ofwA(z) for small zc2z.
The curvewA(z) terminates at the critical elongationzc :
wA(zc)5wc(zc). For our model, one findszc50.345, and its
position is marked by an arrow in Fig. 1. The asympto
laws for the transition from phase II to phase III have earl
been described as the type-A transition, as can be inferre
from Ref. @38# and the papers quoted there. The square-r
singularity of the Debye-Waller factorf q

N , Eq. ~29!, implies
via Eq. ~24! that the two phase-transition lines do not mer
transversally: (d/dz)wA(zc)5(d/dz)wc(zc). All together,
this explains the minimum of thewA(z) versusz curve near
z50.23.

There are some characteristic features of the type-A tran-
sition that are relevant in the analysis of the type-B-transition
dynamics: these are connected with thez variation of the
critical Lamb-Mössbauer factorsf q,s

xc and the critical ampli-
tudeshq,s

x @26#. Figure 12 exhibitsf q,s
Nc andhq,s

N for the total-
density fluctuations along the type-B transition linewc(z)
parameterized byz. Figure 13 shows the corresponding r
sults for the charge-density correlator,f q,s

Zc and hq,s
Z . They

deal with the transition from phase II forz,zc to phase III
for z.zc . We note in passing that the curves shown in the
figures exhibit nonmonotonicz dependence, such as wiggle
or even minima and maxima. These anomalies are analog
the gentle oscillations, discussed above in connection w
Fig. 10, and they can, in principle, be explained as was d
in Ref. @24# for dumbbell molecules immersed in a har
sphere system. For strong steric hindrance, sayz>0.8, f q,s

Nc is
rather close tof q,s

Zc , and this holds also for critical ampli

FIG. 12. Critical nonergodicity parametersf q,s
Nc and the critical

amplitudeshq,s
N for the tagged molecule’s total density fluctuatio

along the type-B transition line in Fig. 1 parametrized by the elon
gationz for the wave numbersq53.4 ~a!, 7.0~b!, 10.6~c!, 14.2~d!,
and 17.4~e!. The critical amplitudeshq,s

N for q514.2 and 17.4 have
been omitted to avoid the overlapping of the curves.
3-12
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tudes, hq,s
N and hq,s

Z . For z approachingzc , the Lamb-

Mössbauer factorf q,s
Zc falls below f q,s

Nc , and the critical am-
plitude hq,s

Z grows abovehq,s
N . These are characteristi

features of the type-A transition, whose transition point ca
be characterized by the vanishing of the critical nonergod
ity parameterf q,s

Zc and by the divergence of the critical am
plitude hq,s

Z @38#. The former feature is demonstrated, f
example, by the strong decrease off 1,s

c 5 f q→0,s
Zc for z50.4

shown in the lower panel of Fig. 10 compared to that foz
51.0 in the same panel. Since the critical amplitudehq,s

Z

gauges the dynamics in theb-relaxation regime, the dynam
ics of the charge-density correlators as well as the dip
correlator nearzc is strongly influenced by precursor ph
nomena of the type-A transition from phase II to phase III
Their dynamics in thea-relaxation regime is also perturbe
since the leading correction to thea-scaling law is propor-
tional to the critical amplitude@3#. These features will be
discussed in the following paper@26#. Thus, the dynamics fo
elongations close tozc is qualitatively different from that for
large elongations, and this is why we have chosen as
representative elongationz50.4 for the demonstration of th
state with weak steric hindrance for reorientations. Gen
cally, there is no type-A transition line for arbitrary diatomic
molecules. In our problem, this singularity is due to an a
ditional symmetry that produces vanishing coupling co
stants. The top-down symmetry of the molecule renders
MCT equations to decouple completely into one set for to
density fluctuations and another one for charge-density fl
tuations. For nearly top-down symmetrical molecules,
type-A transition is smeared to a rapid crossover from
very small nonergodicity parametersf q,s

Z for z!zc to those
of order unity forz@zc @21,38,39#. By continuity, the critical

FIG. 13. Results as in Fig. 12, but for the tagged molecu
charge-density fluctuations,f q,s

Zc and hq,s
Z . The dashed lines are

added here, denoting the critical nonergodicity parameter~upper
panel! and the critical amplitude~lower panel! for the zero-wave-
number limit. The arrow marks the transition point from phase II
phase III atzc50.345 taken from Fig. 1.
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amplitudehq,s
Z remains large forz near zc also for asym-

metrical molecules. Therefore, the results forz50.4 are also
representative for such cases, where the type-A transition
singularity is avoided due to breaking of the top-down sy
metry of the constituent molecules, provided the breaking
sufficiently weak.

The described type-A transition has been studied also f
a single dumbbell immersed in a system of hard spheres.
diagrams corresponding to the upper panels in Figs. 12
13 are qualitatively similar@39#, but there are two remark
able differences. First, the form factorsf q,s

Nc are somewhat
larger and the variation withz for z>zc is more pronounced
for the hard-dumbbell system than for the correspond
quantities for the simple system. Similarly, forz.0.5 the
f q,s

Zc are larger in Fig. 13 than for the single-dumbbell syste
Second, the (z2zc) interval for the decay off q,s

Zc from large
weakly z-dependent values to zero at the transition is n
rower for the motion in the dumbbell liquid than for th
motion in the hard-sphere system. These differences re
the fact that steric hindrance for translation as well as
reorientation is more efficient if the cage-forming neighb
molecules are sufficiently elongated rather than being sph
cal. This conclusion explains also that the obtained criti
value zc50.345 is smaller than the corresponding val
0.380 obtained for a single dumbbell in a hard-sphere sys
@24#.

V. CONCLUSIONS

A mode-coupling theory~MCT! for the evolution of
glassy dynamics is derived and used to discuss the idea
liquid-glass transition in a hard-dumbbell system~HDS!. The
theory predicts a singular change of the dynamics cause
a regular change of the canonically defined equilibriu
structure factors with variations of control parameters l
the packing fractionw. The structure factors define th
mode-coupling constants in the equations of motion for
correlation functions, and they have been evaluated wit
the RISM and Percus-Yevick theories. The good agreem
of the results from the two approximate approaches sup
the opinion that the used input information of the MCT
semiquantitatively correct. The results have been used
demonstrate that T-shaped configurations are the prefe
arrangements of the cage-forming neighbors of a molec
The observed arrangements are similar to those discu
earlier for more dilute systems@33#; but the ordering in our
high-density regime is more pronounced. In addition, ther
intermediate-ranged order leading to a central peak
quadrupole-density fluctuations, but this is irrelevant for t
explanation of the glassy dynamics within the present the
~Sec. III!. There is no information available on the correc
ness of the cited structure-factor theories within the largew
regime studied in this paper. This implies obvious reser
tion concerning quantitative details of the results present

The MCT for molecular systems proposed in this pape
based on describing the dynamics by (n3n)-matrix correla-
tors formed with then interaction-site densities of the mo
ecule’s constituent atoms. Such basis is inferior to that us
a description by infinite-matrix correlators formed wi

s
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S.-H. CHONG AND W. GÖTZE PHYSICAL REVIEW E65 041503
tensor-density fluctuations@14–22#, provided the equations
of motion of the latter theory could be solved for paramet
and time regimes of interest. For example, our theory d
not directly lead to results for the angular-momentuml 52
reorientational correlator, which is relevant for the descr
tion of depolarized light-scattering data. However, it w
shown already in some other context@24#, how the l 52
reorientational correlator can be obtained as an addendu
the site-representation theory. A more subtle extension of
theory would be necessary, if there exists second-order p
transition. A treatment of the interference of the slow gla
dynamics with the critical dynamics of the phase transit
would require the inclusion of the critical fluctuations in th
relaxation kernel in the spirit of the original derivation
mode-coupling theories by Kawasaki@40#. It is unclear at
present whether such an extension can be formulated.

Compared to a hard-sphere system~HSS!, the fusion of
two hard spheres to a dumbbell of elongationz, 0,z<1,
increases the free volume if the packing fraction is k
fixed. Therefore, the liquid gets stabilized and the line for
liquid-to-glass transitionwc(z) is above the transition valu
wc

HSS of the HSS. Like for the HSS, the transition is drive
by the density fluctuations with wave vectors near the po
tion of the first sharp diffraction peak. For smallz, the peak
is formed by the center-to-center correlations, which
crease with increasingz, leading to an increase of thewc
versusz transition curve. For largez, the peak is formed by
the quadrupole correlations; and these increase withz, lead-
ing to a decrease of the transition line. This explains
pronounced maximum of the transition curve in Fig. 1. T
model studied exhibits a symmetry with respect to the t
down flip of the molecule’s axis. As explained in the earl
MCT literature, this implies a line of spin-glass-type tran
tions shown as dashed curve in Fig. 1.

A comment concerning the accuracy of the reported c
culations might be adequate. After the specified discret
tion of the wave numbers, Eq.~21! for the 100 numbersf q

N is

solved by the iterationf q
N( j 11)5F q

N@ f N( j )#/$11F q
N@ f N( j )#%,

j 50,1, . . . ,starting fromf q
N(0)51. The sequence decreas

monotonically towards the nonergodicity parameterf q
N( j )

→ f q
N . The linearized iteration ford f q

( j )5 f q
N( j )2 f q

N reads
d f q

( j 11)5(pAqpd f p
( j ) , where the Frobenius matrixA is given

by Aqp5(12 f q
N)2]F q

N@ f N#/] f p
N . The matrix has a maxi-

mum eigenvalueE<1. Off the critical points, one getsE
,1, and the convergence of the iteration is exponentia
fast. The critical point is characterized byEc51, and here
the convergence is only algebraically. The proofs of the ci
mathematical properties can be found in Ref.@41#. Near the
critical point, one derives from Eq.~29! Ec2E}Aw2wc.
Analogous statements hold for the calculations off q,s

Z from
Eq. ~24!. In our numerical work, the value forE is controlled
and w2wc is determined routinely so thatEc2E'1024.
Hence, the critical points are calculated with an accuracy
the order 1028. Thus, the accuracy of the lines in Fig. 1
determined by the numbern* of values forz used to calcu-
late wc(z) and wA(z). We used a grid withn* 570; it was
chosen nonuniformly over the interval 0<z<1 with the
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highest density of points forz nearzc .
Letz et al.have discussed a liquid-glass phase diagram

a system of hard ellipsoids@19#. Considering their aspec
ratio of the prolate ellipsoids as an analog of (z11) for the
dumbbells, their phase diagram looks similar to Fig. 1. Th
also show the analogue of the glass-to-glass transition cu
albeit without a minimum and with a transversal terminati
at the liquid-glass-transition line. It is argued in Ref.@19# that
the strong decrease of thewc versusz curve for aspect ratios
near 2 is an implication of the central peak of the angul
momentuml 52 correlations, reflecting a nematic-transitio
precursor. Hence, the explanation of the phase diagram g
in Ref. @19# for the hard-ellipsoid system is quite differen
from the explanation of Fig. 1 for the dumbbell system.

The critical form factors for the glassf q
Nc quantify the

arrested amorphous-density fluctuations at the transition.
wave-vector dependence, Fig. 9, is quite similar to that fo
HSS. This reflects the fact that the cage around an interac
site is quite similar to that found for the HSS. The critic
nonergodicity parametersf q,s

Zc for the arrest of the dipole re
orientation, Fig. 13, are larger than the same quantities
culated for a single molecule in the HSS@24#. In particular,
the decrease off q50,s

Zc for z decreasing to the critical valuezc

is so abrupt, that the transition looks similar to a discontin
ous one. This shows that steric hindrance for reorientatio
more effective in a molecular system than in a system
spherical particles.

In a planned paper@26#, it will be shown that the results
for the arrested structure provide the key for an explana
of the structural relaxation.
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APPENDIX: MODE-COUPLING THEORY
FOR MOLECULAR SYSTEMS

The MCT focuses on the dynamics of density fluctuatio
Within the site representation, the basic variables are
density fluctuations for then interaction sites of theN mol-
ecules:rqW

a
5( i 51

N exp(iqW•rWi
a), a51,2, . . . ,n. HererW i

a denotes
the position vector of the sitea in molecule i. The most
important correlation functions for a statistical description
the dynamics are

Fq
ab~ t !5^rqW

a
~ t !* rqW

b
~0!&/N, a,b51, . . . ,n. ~A1!

Thesen2 functions shall be considered as the elements of
n3n matrix Fq(t). This matrix is real and symmetric. Th
short-time expansion of this matrix is given by

Fq~ t !5Sq2
1

2
q2Jqt21O~ t4!. ~A2!

Here the structure-factor matrix is given bySq
ab

5^rqW
a(t)* rqW

b(0)&/N, and Jq
ab5^(qW • jWqW

a)* (qW • jWqW
b)&/Nq2 is de-

fined in terms of the currents referring to the interaction si
3-14
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jWqW
a
5( i 51

N vW i
a exp(iqW•rWi

a) with vW i
a denoting the velocity of the

sitea in moleculei. The Zwanzig-Mori formalism@28# leads
to an exact equation of motion forFq(t),

] t
2Fq~ t !1Vq

2Fq~ t !1Vq
2E

0

t

dt8mq~ t2t8!] t8Fq~ t8!50,

~A3!

where

Vq
25q2JqSq

21 . ~A4!

The right-hand side of this equation is a product of two po
tive definite matrices. Hence it is equivalent to the square
a positive definite matrix. Therefore, one can write it as
square,Vq

2 , of some matrixVq . Splitting off this matrix in
front of the convolution integral is done for later conv
nience.

The difficult problem is the derivation of an approxim
tion for the matrix mq(t) of fluctuating-force correlations
such that the cage effect is treated reasonably. This has
done originally in Ref.@23# by extending the procedure use
for atomic systems@42#. But the reported formulas@23# are
not acceptable. First, they do not properly reduce to those
simple systems in the united atom limit. Secondly, the m
mentum conservation law for coherent dynamics is not
isfied. For these reasons, an alternative derivation has
developed in Ref.@24# starting from the projection-operato
theory of Mori and Fujisaka@43#, albeit for molecules im-
mersed in a simple system. It is possible to generalize
derivation for the coherent density correlatorsFq(t) for mo-
lecular systems, but the procedure becomes more involve
shall be described in a separate paper@44#. Here, a more
simplified derivation shall be presented.

The simplified procedure starts by assuming that a m
lecular system is a mixture of constituent atoms; intram
lecular constraints between constituent atoms are accou
for by the pair correlations only. In this way, a system ofN
molecules is treated as a mixture ofn species, each consis
ing of N particles. Using the equations in MCT for mixture
@45#, one gets the following expression for the relaxati
kernel:

mq
ab~ t !5F q

ab@F~ t !#, ~A5!

where the mode-coupling functionalFq is given by the equi-
librium quantities

F q
ab@ f̃#5

1

2 (
c

Sq
ac (

l,l8,m,m8
E dkWVll8mm8

cb
~qW ;kW ,pW ! f̃ k

ll8 f̃ p
mm8 ,

~A6!

Vll8mm8
ab

~qW ;kW ,pW !5
r

~2p!3
$qW •@damkWck

al1dalpW cp
am#%

3$qW •@dbm8kWck
bl81dbl8pW cp

bm8#%/q4,

~A7!
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with pW 5qW 2kW . Here, the direct correlation function is define
via the Ornstein-Zernike equation for a mixture@28#, rcq

ab

5dab2(Sq
21)ab. Now, let us turn on the intramolecular con

straints between constituent atoms. This amounts to rep
ing the direct correlation functioncq

ab for a mixture of
spherical particles with that for molecular systems defin
via the site-site Ornstein-Zernike equation@27,28#, rcq

ab

5(wq
21)ab2(Sq

21)ab. Here enter the intramolecular correla
tion functions wq

ab describing the constraints. The so o
tained equations for a mixture contain a frequency ma
Vq

2 , which reflects the 3n independent degrees of freedom
the molecule. In particular,Vq

2 gets ann-fold degenerate
eigenvalue zero forq50 due to then particle-number-
conservation laws for then species. The used classical theo
cannot account for the fact that vibrational degrees of fr
dom are frozen out at sufficiently low temperature becaus
quantum effects. To repair this shortcoming, we make
assumption that in the regime of interest the rigidity of t
molecule can be accounted for by replacing the class
flexible-molecule value forVq

2 in front of the convolution
integral in Eq.~A3! by the formula in Eq.~A4!. The matrix
Vq

2 for a rigid molecule exhibits only one eigenvalue zero f
q50, since there is only one independent conservation
for the number of molecules.

The MCT equations for the tagged-molecule density c
relator Fq,s(t) defined in Eq.~5! can be obtained similarly
and only the resulting equations shall be quoted. The ex
Zwanzig-Mori equation reads

] t
2Fq,s~ t !1Vq,s

2 Fq,s~ t !1Vq,s
2 E

0

t

dt8mq,s~ t2t8!

3] t8Fq,s~ t8!50, ~A8!

where the characteristic frequency matrix is given as in
~A4! by Vq,s

2 5q2Jqwq
21 . The expression for the relaxatio

kernel can be formulated as the mode-coupling functio
Fq,s ,

mq,s
ab ~ t !5F q,s

ab @Fs~ t !,F~ t !#. ~A9!

The explicit expression for the functionalFq,s reads, with
pW 5qW 2kW ,

F q,s
ab @ f̃ s , f̃ #5

r

~2p!3 (
c

wq
ac

q2 (
l,m

E dkW

3S qW •pW

q
D 2

cp
clcp

bm f̃ k,s
cb f̃ p

lm . ~A10!

Let us note some mathematical results valid for the M
formulated above. First of all, there is a solutionFq(t) of the
nonlinear equations of motion for all timest. This solution is
uniquely fixed by the initial conditionsFq(t50)5Sq and
] tFq(t50)50. For every finite time interval, the solutio
depends smoothly on the numbersVq

2ab and
3-15
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Vll8mm8
ab (qW ;kW ,pW ). The solutions are correlation functions

the sense that they can be Laplace transformed to funct
having a spectral representation with a spectrumFq9(v),
which is a positive definite matrix. The matrix of long tim
limits, Fq5 limt→`Fq(t), obeys the set of implicit equation
defined by the mode-coupling functionalFq ,

Fq@Sq2Fq#215Fq@F#. ~A11!

Let us remember that there is a semiordering in the spac
real symmetricn3n matrices,A.B, defined byA2B to be
positive definite. With this notation, the maximum theore
holds: if F̂q is a solution of Eq.~A11!, i.e., if F̂q@Sq

2F̂q#215Fq@ F̂#, then F̂q<Fq . If an iteration sequence
Fq

( j ) , j 50,1, . . . , is defined by Fq
( j 11)@Sq2Fq

( j 11)#21

5Fq@F( j )# starting from Fq
(0)5Sq , then Fq

( j 11),Fq
( j ) and
.

,

s.

ys

.

nd

E

ia,

. E

,

04150
ns

of

lim j→`Fq
( j )5Fq . If the Jacobian of Eq.~A11! does not have

a vanishing eigenvalue, the long-time limitFq depends

smoothly on the coupling coefficientsVll8mm8
ab (qW ;kW ,pW ). A

singularity can occur only if an eigenvalue vanishes. T
subtlest property is that such a vanishing eigenvalue is n
degenerate. Hence, using the terminology of Arnold@46#, all
possible singularities are bifurcations of the cuspoid ty
Al , l 52,3, . . . . Thegeneric singularity for changes of
single control parameter is, as for the MCT of simple sy
tems, a fold bifurcationA2. It is then obvious that all univer-
sal results for simple systems are valid also for the MCT
molecular systems formulated above. For example, Eq.~29!
holds with f q

Nc andhq
N replaced by positive definite matrice

The proofs of the cited results of this paragraph shall not
described here for brevity, since essentially the same iss
for matrices of density correlators have been independe
discussed and proved by Franosch and Voigtmann@47#.
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